Driver Eye Gaze and Driver Behaviour

 on Rural and National RoadsDr Catherine Deegan
Senior Lecturer, Institute of Technology Blanchardstown

Summary of research activity within SimRG

Dr. Catherine Deegan: Department of Engineering, IT Blanchardstown
Dr. Charles Markham: Department of Computer Science Maynooth University

Dr. Sean Commins: Department of Psychology Maynooth University
itb

Aims

To understand the anatomy of a road accident. data fusion, statistics

To build a model of the Irish Road Network based on cognitive and physical models. driver behaviour, physics of car

Provide new methods for assessment, training and rehabilitation
returning to driving, novice drivers

Research Themes

Photorealistic simulation of Irish Roads

Most commercial driving simulators use model data
Benefits of video over model based simulators?

Model based driving simulator

\uparrow Augment model

Drive road network

Video Acquisition System

Navigational System

Acquisition of Video Stream

Comparison Among Three Data Sets

$$
\mathrm{n}=11
$$

Ground-truth and Model:
87.3\% Correlation
84.6\% Correlation Video and Model: 92.8\% Correlation

Results of GPS Model and Video Data

Cognitive assessment of drivers

RSA 2012 report 11\% Pedestrian

86\% of accidents on Irish roads are due to driver error and behaviour

Table 36 Two Vehicle Collisions: Contributory Action, where Specified

Driver Action	Fatal	Injury	Total	$\%$
Drove through Stop/Yield Sign	0	37	37	13.3^{*}
Exceeded Safe Speed	0	12	12	4.3
Went to Wrong Side of Road	7	94	101	36.2^{*}
Improper Overtaking	0	6	6	2.2
Drove Through Traffic Signal	0	30	30	10.8^{*}
Failed to Signal	0	0	0	0.0
Other Action	0	93	93	33.3
TOTAL	7	272	279	100.0

Many of these may be due to 'cognitive' failings', such as

Inattention, Distraction, Fatigue,
Poor decision making, Impulsivity, Risk-taking etc.

Driver Distraction/Inattention

In Australia, distraction accounts for between $14 \%-33 \%$ of serious crashes (McEvoy et al., 2007).

In Norway 22\% of crashes were due to distraction and inattention (Dingus et al., 2006).

We have recently shown that attention levels can affect driving behaviour and where people look.
$1^{\text {st }}$ set of experiments:
To investigate the driving behaviour of high and low attention individuals

1. Car-following experiment (using modelled environment)
2. Driving a rural environment-measure eye gaze.

- (1)Measured accelerator pedal, braking timing and distance from lead car.
- (2)Measured driver eye gaze in a rural environment.

Typical sustained attention data

Reaction time: 0.5 s
Collisions: 2
_Separation (m) _Lead car braking ——Following car braking

Eye Tracking on a Rural Road-High and Low Attenders

Driver view and eye-gaze
（－回 8

Play controls
（III）
3000 会 1
$\mathrm{HL} \mathrm{P} \quad \mathrm{T}$
（ 0 0：Stephen＊
（ 1：Mark

Record video
（10） 2001
（［0） 3029
－F
Targets
16：Car Reve－
17：Road Nar
18：Truck
19：Truck GA－

Goto	
Delete	Save

Targets: Motorway road sign

Individual response to an individual event

Target view counted in terms of frames

Index	Name	Car Rev.	Gap	M3 Navan
0	St...	0	0	51
\ldots	\ldots	\ldots		\ldots
6	Ai...	10	0	
7	Sh...	1	0	17
8	Da...	5	0	56
9	Al...	16	1	49
10	Do...	20	0	0
11	Ne...	10	6	33
\ldots	\ldots	\ldots	\ldots	
27	Pa...	2	15	82
28	Pe...	7	2	
29	Ra...	7	0	40
30	An...	0	0	9

Accelerator pedal position (Car Reversing)

Index	Name	Before	During	After
0	St...	0.25	0.32	0.7
\ldots	\ldots	\ldots	\ldots	\ldots
6	Ai...	0.45	0.26	0.44
7	Sh...	0.39	0.24	0.45
8	Da...	0.21	0.07	0.38
9	Al...	0.21	0.09	0.23
10	Do...	0.31	0.21	0.35
11	Ne...	0.45	0.32	0.49
\ldots	\ldots	\ldots	\ldots	\ldots.
27	Pa...	0.42	0.44	0.49
28	Pe...	0.21	0.13	0.38
29	Ra...	0.31	0.24	0.39
30	An...	0.72	0.79	0.97

Individual overall response to the route

Time to drive route

Index	Name	Rural (S)	Motorway (S)
0	St..	291.4	273.9
\ldots	$\ldots . .$.	\ldots	\ldots
6	Ai..	276.5	275.4
7	Sh..	244.7	275.2
8	Da..	387.2	174.4
9	Al..	414.9	586.4
10	Do..	305.6	495.9
11	Ne..	272.5	428.7
\ldots	\ldots	...	\ldots
27	Pa..	329	278.5
28	Pe..	345.3	433.4
29	Ra..	365.3	555.9
30	An..	139	269

Count of speedo. "looks"

Index	Name	Rural	Motorway
0	St..	39	44
\ldots		\ldots	\ldots
6	Ai..	65	4.
7	Sh..	51	21
8	Da..	31	63
9	Al..	65	27
10	Do..	94	79
11	Ne..	46	49
\ldots		\ldots	\ldots
27	Pa..	11	...
28	Pe..	95	149
29	Ra..	76	39
30	An..	6	10

Group response to an event or target

Mean view per driver (frames)

Name	Mean frame count
HorseNCart A	29.8
HorseNCart B (GAP)	9.6
Car Reversing	7.3
Car Reversing GAP	2.8
Road Narrowing Sign A	0.2
Dog Walkers	5.1
Dog Walkers- GAP	9.2
Big Bend RIGHT	4.3
Brown Sign (Services) vs M3 Staight Line Target Box 2	1.2
M3 Navan Exit Left Kells \& Cavan Straight	29.6
NAVAN Exit Immediate Left	11.5
Exit 8 Left	0.0
Caution Signs M3	0.2
Speed Sign M3 120 KM	0.0
Speedo_Rural	271.8
Speedo_Motorway	375.7

Eye Gaze Measurements

Low-Cost Eye Trackers

Eyetribe

Gazepoint GP3

Eye gaze count per frame

Speedometer, Road, Other, Outside cluster, Eyes
Inner: Cluster, Red, Green, Blue Middle: Yellow outside ellispe Outer: Black - Low, White - High

68 drivers, Red "speedo", Green "road", Blue "something else"

Rural- difference between high and low attenders (20pt moving average)

Rural road summary
High attenders check speedometer 10\% more
Both look at road equally
Low attenders look around 18\% more

Motorway summary
High attenders check speedometer 6\% more
Both look at road equally
Low attenders look around 20\% more

Motorway - difference between high and low (20pt moving average)

Previous Findings

- 30-60\% accidents due to distraction factors
- Much of the simulator based research has been concentrating on in-vehicle distraction factor(i.e.mobile phones, in-vehicle information systems)
- Experienced, as well as novice drivers, are
likely to be distracted and involved in accidents

General Research Aims

- Investigate the complex relationship between the driver and road environment.
- Using-simple driving simulators, synchronised bio-feedback devices ~(eye tracking, EEG).

Proposed Study

- To investigate the potential for distraction of additional structures on selected parts of the Irish road network
- Focus on distraction sources outside the vehicle
- Eg- advertising hoardings, artworks, signage

To what extent will these structures cause a distraction?
Rural vs urban locations-will driver response vary ?
Will driver response settle over time?

