# **Application of dTims**

for

# **Pavement Management of Irish Roads**

# National Road Network



- Total Network 5300km approx
- Motorway / Dual Carriageway 1200km approx
- Approx 50/50 NP/NS Split
- Up to end 2010 significant new build
- Post 2010 Reduced funding & new build

### **Active Management required**

- Get optimal use from asset
- Ensure asset is preserved
- Identify likely funding requirements to get a stated level of performance
- Make optimal use of the available funding



### **NRA Network Model**

- Re-engineered Model developed
- All elements of network modelled
  - Mainline
  - Ramps
  - Roundabouts etc
- New Linear Referencing System
- Unique Identifier needed to "hang" data on network





An tÚdarás um Bóithre Náisiúnta National Boads Authority

Network Management

# **Network Surveys**

- Network Condition Survey (PMS Ltd, 6 yr Contract)
  - Annual
  - Full Network in 1 direction
  - Alternate Directions in subsequent years
    - i.e. Year 1 Northbound (D1)
      - Year 2 Southbound (D2)
- Condition Parameters
  - Skid Resistance (SC)
  - International Roughness Index (IRI)
  - 3 Metre Variance (LPV3)
  - Rut Depth
  - iviacrotexture
  - Cracking (LCMS) 2013 onwards
- Ground Penetrating Radar (One off survey in 2013)
- Route Geometrics curves, gradients
- Video

An tÚdarás um Bóithre Náisiúnta National Roads Authority Network Management

Used in dTims PMS

### Survey Data - SCRIM



HD 28 Management of Skid Resistance - Not managed within dTims



### Survey Data - RSP



**Road Surface Profilometer** 

- Rut Depth
- IRI
- LPV3
- Macrotexture



# Sub Networks

- National network is not homogenous.
  - Ranges from brand new fully engineered motorway to legacy pavements
  - Management of the network needs to recognise this variability in order to manage intelligently
  - Concept of Sub-networks introduced
- Classification Criteria
  - Network is either Engineered or Legacy (Non-Engineered)
  - Engineered Network
    - Motorway/Dual Carriageway or
    - Single Carriageway
  - Legacy Network
    - Single Carriageway
    - Traffic
      - High,
      - Moderate
      - Low



### Sub Networks



Result is 5 sub-networks with measurably different condition distribution

- Subnet 0 Motorway/Dual Carriageway
- Subnet 1 SC Engineered
- Subnet 2 Legacy HT
- Subnet 3 Legacy MT
- Subnet 4 Legacy LT





# Sub Networks – Performance Categories

- 5 Performance Categories Very Good – Very Poor
- Same Condition Parameters on all sub networks
  - IRI
  - Rut Depth
  - LPV3
- Different definitions of Very Good/Good/Fair etc for each sub network
- Reflects different performance requirements on different sub networks

e.g. **IRI = 3** 

| Rut | Do | nth |
|-----|----|-----|
| Nut |    | pui |

IRI

Category

**V** Poor

Poor

Fair

Good

V. Good

>3

2.5 to 3

2 το 2.5

1.5 to 2

<1.5

| Category | Subnet 0 | Subnet 1 | Subnet 2 | Subnet 3 | Subnet 4 |
|----------|----------|----------|----------|----------|----------|
| V Poor   | >9       | >9       | > 15     | > 15     | >20      |
| Poor     | 6 to 9   | 6 to 9   | 9 to 15  | 9 to 15  | 15 to 20 |
| Fair     | 5 to 6   | 5 to 6   | 6 to 9   | 6 to 9   | 9 to 15  |
| Good     | 3 to 5   | 3 to 5   | 4 to 6   | 4 to 6   | 6 to 9   |
| V. Good  | <3       | <3       | < 4      | < 4      | < 6      |

>3.5

3 to 3.5

2.5 to 3

2 to 2.5

<2

> 5

4 to 5

3.2 to 4

<2.7

2.7 to 3.2 2.7 to 3.2

#### LPV3

| Category | Subnet 0 | Subnet 1 | Subnet 2 | Subnet 3 | Subnet 4 |
|----------|----------|----------|----------|----------|----------|
| V Poor   | > 4      | > 5      | > 6      | > 7      | > 10     |
| Poor     | 3 to 4   | 4 to 5   | 4 to 6   | 5 to 7   | 7 to 10  |
| Fair     | 2 to 3   | 3 to 4   | 3 to 4   | 3.5 to 5 | 4 to 7   |
| Good     | 1 to 2   | 1.5 to 3 | 2 to 3   | 2 to 3.5 | 2 to 4   |
| V. Good  | < 1      | < 1.5    | < 2      | < 2      | < 2      |



Subnet 3 Subnet

>7

5 to 7

4 to 5 3 to 4

<3

> 5

4 to 5

3.2 to 4

<2.7

### Pavement Management – Live System

### Live System – optimal solutions for defined performance target

- Targets Overriding strategies that govern how pavements are managed
- Key Performance Indicators (KPI) Used to measure performance in meeting defined target(s)
- Requires Knowledge & Data
- Analyses based on information within system
  - Poor information → unreliable output



# Pavement Management – Live System

- Accurate Information
  - Survey data
    - Correct condition parameters
    - Quality Control
    - "Freshness" of the data
  - HD28 & Pavement schemes as constructed
    - Start & End to avoid Orphans & Duplicates
    - Depth to predict Pavement life
    - Surface type to schedule Surface Course renewal
    - Costs to run Scenarios
  - Realignment & Safety Scheme
    - Most of the above
    - Network Model
      - Adjustment
      - Archive data
      - Pavement Condition Survey



### dTims - Overview







An tÚdarós um Bóithre Nóisiúnta National Roads Authority Network Management

### dTims - Homogenisation

<u>Analysis Sections</u> - prepared by the homogenisation of 100m condition data & other data e.g traffic, construction type





# dTims – Models & Sub networks

• Different deterioration model parameters

| $ \mathbf{R} _{i} =  \mathbf{R} _{i} + (\mathbf{a} + \mathbf{b} \cdot \mathbf{ESA} _{i} \cdot 10)$ |   | 0      | 1     | 2     | 3     | 4    |
|----------------------------------------------------------------------------------------------------|---|--------|-------|-------|-------|------|
|                                                                                                    |   | 0.05   | 0.05  | 0.08  | 0.11  | 0.15 |
|                                                                                                    | b | 0.0025 | 0.005 | 0.008 | 0.015 | 0.02 |
|                                                                                                    |   |        |       |       |       |      |
| $RD_t = A \cdot cumESAL_t^b$                                                                       |   | 0      | 1     | 2     | 3     | 4    |
|                                                                                                    |   | 2.4    | 2.75  | 3.5   | 5     | 7    |
|                                                                                                    |   | 0.35   | 0.4   | 0.6   | 0.7   | 0.8  |
|                                                                                                    |   |        |       |       |       |      |
|                                                                                                    |   | 0      | 1     | 2     | 3     | 4    |
| $LPV3_t = LPV3_{t-1} + a \cdot ESAL_t$                                                             | а | 0.02   | 0.2   | 0.45  | 0.88  | 2    |

Annual monitoring of overlay scheme locations allow models to be updated to reflect "real" deterioration rates



### dTims – Treatment Trigger Matrix

|     |           | Ride Quality (IRI or LPV3) |   |   |   |      |      |   |
|-----|-----------|----------------------------|---|---|---|------|------|---|
|     |           | Very Good Good Fair Poor   |   |   |   | Very | Poor |   |
| Rut | Very Good | N                          | N | N | 0 |      | ο    | т |
|     | Good      | N                          | N | N | C | )    | ο    | т |
|     | Fair      | N                          | N | N | C | D    | ο    | т |
|     | Poor      | 0                          | 0 | о | C | ס    | ο    | т |
|     | Very Poor | т                          | т | т | т | R    | F    | 2 |

- N = No Treatment/Age Based Treatment
- O = Overlay
- T = Strengthen
- **R** = Reconstruction



### dTims – Treatments & Resets Matrix

| Replace Surface<br>Course (S) | Chip Seal, Micro-Surfacing, Thin<br>Surface Overlay, Plane & Replace, Thin<br>Surface (include pre-treatments) | Retard ageing, Restore<br>Surface Characteristics<br>Improve or restore<br>functionality                                   | Treatments |
|-------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------|
| Overlay (O)                   | Inlay 50-100mm, Overlay up to 100mm,<br>Base / binder patching, (include pre-<br>treatments)                   | Increase strength, retard<br>ageing, improve or<br>restore surface<br>characteristics, improve<br>or restore functionality |            |
| Strengthening (T)             | Inlay 100-200mm, Overlay up to 200<br>mm                                                                       | Increase strength, retard<br>ageing, restore surface<br>characteristics, improve<br>or restore functionality               |            |
| Reconstruction (R)            | Full depth reconstruction (>200mm),<br>Subbase reconstruct                                                     | Increase capacity,<br>Increase Strength, Retard<br>ageing                                                                  |            |

|        | Treatment              | Parameter | Subnet |      |      |     |      |
|--------|------------------------|-----------|--------|------|------|-----|------|
|        |                        |           | 0      | 1    | 2    | 3   | 4    |
|        | <b>Replace Surface</b> | RD        | -2     | -2   | -2   |     | -2   |
|        | (Relative Reset)       | IRI       | -0.5   | -0.5 | -0.5 |     | -0.5 |
|        |                        | LPV3      | -0.5   | -0.5 | -0.5 |     | -0.5 |
|        |                        |           |        |      |      |     |      |
|        |                        | RD        | 2      | 2    | 3    |     | 4    |
|        | Strengthen             | IRI       | 1      | 1.4  | 2    |     | 2.2  |
| Pocoto |                        | LPV3      | 0.8    | 0.8  | 1.2  |     | 1.2  |
|        |                        |           |        |      |      |     |      |
|        |                        | RD        | 2      | 2    | 3    |     | 4    |
|        | Overlay                | IRI       | 1.2    | 1.7  | 2.2  |     | 2.5  |
|        |                        | LPV3      | 0.8    | 0.8  | 1.2  |     | 1.2  |
|        |                        |           |        |      |      |     |      |
|        |                        | RD        | 2      | 2    | 3    |     | 4    |
|        | Reconstruct            | IRI       | 1      | 1.4  | 2    | 2.2 | 2.2  |
|        |                        | LPV3      | 0.8    | 0.8  | 1.2  | 1.2 | 1.2  |



Do Nothing



#### Technical Optimum (Unlimited Budget)





No more than 5% Poor / Very Poor

Network Management

€70M Budget per annum

### dTims - Sample Scenario Costs

| Year | Do Nothing | Technical Optimum | €70 Million | Maintain under 5% |
|------|------------|-------------------|-------------|-------------------|
| 2013 | 0          | €423,812,152      | €69,994,008 | €89,996,616       |
| 2014 | 0          | €297,905,032      | €69,996,752 | €89,999,888       |
| 2015 | 0          | €58,896,872       | €69,997,096 | €89,999,144       |
| 2016 | 0          | €78,564,184       | €69,995,240 | €89,998,528       |
| 2017 | 0          | €56,940,312       | €69,998,984 | €89,996,800       |
| 2018 | 0          | €100,448,296      | €69,999,480 | €79,993,520       |
| 2019 | 0          | €67,754,680       | €69,989,216 | €79,995,720       |
| 2020 | 0          | €66,572,048       | €69,999,560 | €79,981,112       |
| 2021 | 0          | €92,668,256       | €69,998,520 | €79,994,112       |
| 2022 | 0          | €112,779,480      | €69,991,976 | €79,969,792       |

| Total | €1,356,341,312 | €699,960,832 | €849,925,232 |
|-------|----------------|--------------|--------------|
|-------|----------------|--------------|--------------|



### dTims - Works Programme Backlogs



% of Total Network in Poor or Very Poor Condition

### dTims – Annualised Works Programme



Extract of 3 years from sample 10 year programme



### dTims – Treatment Types (in a year)



# dTims - Pavement Management

### "Grey Haired Man"



### "Experienced Lady"

- Interrogate results
  - Are they reasonable
  - Do they meet requirements
- Optimise Procurement
  - Bring forward / Push back schemes
  - Co-ordinate with other programmes of work
- Consider other issues / inputs as they arise
- Develop intimate understanding of the system!



### dTims – Annualised Works Programme



Extract of 3 years from sample 10 year programme



### Pavement Management – Constraints / Overriding Factors

- Output for a defined Performance Target
  Change of Target → Different Output
- Condition Data
  - Weather Events Winter 2010, Flooding
  - Sudden significant change in traffic pattern
  - 1. Change Inputs

For example

- Budget Profile (Performance Target)
- Condition Data (Weather)
- 2. Rerun models
- 3. Re-optimise for Budget



### Pavement Management – Constraints / Overriding Factors

- Local Works
  - Water main installation LA vs. Irish Water
  - Communications LA or NRA
- Realignments
  - Likely or wish list
  - Short, Medium or Long timescale
- Political Influence

Flag within dTims & when identified for treatment Adjust Treatment year



### Pavement Management – Constraints / Overriding Factors

Other Factors to be Considered

- Quarries Lorries laden outbound, empty on return
  - Direction of survey may not pick up deterioration
- Bog Ramparts perform differently and may not suit dTims models

### "Grey Haired Man's" experience is required



### Future Progression – New Survey Data

### Cracking Measurement (LCMS)



- Laser
- Crack
- Measurement
- System



### Future Progression – New Survey Data



- Type
  - How to quantify it
- Severity
  - How to rate it
- Modelling
  - How to use it
  - How to predict it







### **Future Progression**

- Deterioration Models Refinement
  - Deterministic or Probabilistic
  - Reset Values
    - Annual monitoring allows adjustment to reflect what is achievable on the ground
  - New Condition Parameters (or make redundant)
- Costs influence on quantum of works
- Sub network Condition Bands Periodic Review & Revision
- Sub network Definition Instead of / In addition to current definition
  - Socio Economic
  - Route to Hospitals
  - Critical Links (no alternative route)
  - Route to transport hubs / ports / motorway junctions etc



# Thank You

Ray McGowan, PMS Ltd Brendan Kennedy, GIS Manager, NRA Andrew O'Sullivan, Engineering Inspector, NRA

