

Life-cycle performance of noise mitigation measures

G.J. van Blokland (M+P)

P. Morgan (TRL)

QUESTIM project

CEDR Transnational Road Research Programme, Call 2012: Noise

funded by Belgium/Flanders, Germany, Ireland, Norway, Sweden, United Kingdom

Mitigating traffic noise

The environmental noise exposure of road traffic is often mitigated through:

- Noise barriers, and
- Noise reducing pavements

Apart from other measures such as façade insulation or traffic calming.

\sim

Initial performance versus life-cycle performance of noise reducing road surfaces

- Frequently observed that the excellent reduction effects disappear after a few years
- Loss of acoustic performance varies significant
 - After 2 years effect is gone
 - After 10 years still performing excellent
- Understanding of aging fails
 - Unclear what material improvements are needed
 - Unclear where to put which surface type
 - Unclear how to plan maintenance and repaving

Objective of QUESTIM

- 1. To collect and analyze age related performance data from surfaces all over Europe
- 2. To understand the aging process of noise reducing surfaces and model it as a function of;
 - Surface type
 - Traffic condition
 - Environmental condition
 - Specific conditions (e.g. studded tyres)
- 3. To develop a monitoring practice to follow performance
- 4. To propose a scheme to implement this in a pavement Management System (PMS)

To a lesser degree also noise barriers

General observation

- 1. All data indicate loss of performance over time
- 2. Sound level increases between 0,3 and 2 dB/year
- Trends are similar over Europe with the exception of Scandinavia where 4 to 6 dB increase after one year were reported (see graphs from N and SF)

2. Understand aging and model it

Both linear and exponential relations are reported
preference for exponential decay of reduction effect

2. Understand aging and model it (2)

- Identifying relevant parameters
 - Intensity of heavy vehicles affects performance loss

\searrow

2. Understand aging and model it (3)

- Adding HDV Intensity improves prediction quality
- Formula for Thin Surface Layers (TSL) on regional roads:
 - using only age: r2=0,67
 - Using also HDV intensity: r2=0,82

C

2. Understand aging and model it (4)

- Manufacturers quality is relevant
 - Example: TSL from producer A and producer B
 - Same initial value: 6 dB reduction
 - After 6 years:
 - Product A: 1 dB reduction
 - Product B: 3 dB reduction

Develop scheme for lifetime monitoring

Most adequate system: CPX

- Challenge: choice of evaluation length.
 - Proposed: 7 times distance roadreceiver:
 - ◆ 20 m →140 m
 - ◆ 50 m → 350 m

segments

Aggregation of segments for evaluation length

 Max value over 7 20m segments, rounded to 0.5 dB (independent of receiver distance

 Define segment length using receiver distance. Max value of the overlapping segments at one 20m segment

Zero Rating Niveau - Example

- Zero Rating Niveau: Stipulated noise reduction value (or CPX level) of road surface or similar
- Determine acoustic condition based on five-stage scale

13

~~~

17L

Life-cycle performance

- First impression
 - Low noise surfaces perform excellent when new, but quickly loose their noise suppressing effect
 - Why bother to spend this extra money?
- Second thought
 - You should compare them to a fair reference, namely a "normal" surface of the same age
 - Accept a more frequent renewal
 - Discuss the total life averaged affect against the costs

Reduction in comparison to standard dense asphalt concrete reference surface type.

Initial effect : -4 dB, assumed final effect: -0,5 dB, actual final effect -1,5 dB, lifetime averaged effect -3,0 dB.

Life-cycle costs compared to benefits

13F

- The financial benefits of low noise surfaces are :
 - □ hedonic pricing (2003 figure 25 €/household/dB/yr.)
 - the effect on house prices and the increased availability of building areas close to road
 - the direct savings in treatment of health problems and valuation of extra healthy life years
 - the savings on abatement measures
- The costs lie in the initial plus more frequent renewal costs of the surface.
- Several studies show that in populated areas benefit to cost ratio's for noise reducing surfaces exceed 1.

Noise barrier durability

- Limited data is available on acoustic durability
 - Not always a mandatory requirement to report this data
 - Appropriate test methods only recently developed (EN/1793-6)
 - Any data largely based on manufacturer expert judgement
 - Measurement data primarily for timber barriers (TRL, 2010) insufficient data to draw robust conclusions

Causes of degradation/poor performance

- Acoustic degradation primarily affects timber barriers and poorly protected/fitted sound absorptive materials
- Impact of effects on noise levels at residences will vary
- Regular inspection/monitoring allows better control/maintenance

18

Do You Have Any Questions?