

Conference of European Directors of Roads

CEDR Transnational Road Research Programme Call 2012

Characterization of Advanced Cold-Recycled Bitumen Stabilized Pavement Solutions

Dr Ciaran McNally UCD School of Civil, Structural & Environmental Engineering

Project information

- Project coordinator: Czech Technical University
- Starting date: 01/01/2013
- Planned End date: 31/12/2014
- Project costs: ~ €373,000
- ➢ 5 partners

Background – strategic outlook

- Assessment of European cold recycling pavement techniques and national designs
- Harmonized mix design procedures
- Suitable performance based tests for cold recycling
- Effective inclusion of cold-recycled mixture in existing pavement design manuals
- Multiple recycling and activity of RAP
- Utilization of alternative binders
- Environmental aspects

Project objectives

- Harmonized European cold recycled design procedures
- Performance based mix design for more effective use
- Estimate material parameters
- Recyclability of cold-recycled material

(RA activity)

Environmental stability

(leaching, tar detection, etc.)

Carbon footprint /life cycle analysis

Work program

WP	Work package title
1	Advanced mix design for cold-recycled materials
2	Durability of cold-recycled bitumen stabilized material
3	Pavement design with cold-recycled bitumen stabilized base
4	Recyclability of cold-recycled BSM applications
5	Environmental compatibility of cold-recycled BSM applications
6	Dissemination and management

Cold recycling material and its stabilizing agents

Foamed bitumen

Hydraulic binder

iolci

Pur 4 N

Bituminous emulsion

Bitumen stabilised cold recycling mixtures

Definition of cold recycled material – binder effect

Binder contents of cold recycling mixtures with bituminous emulsion in Europe

reference : Grilli et al. (2012)

Binder contents of cold recycling mixtures with foamed bitumen in Europe

reference: Grilli et al. (2012)

Comparison compaction methods used in Europe

Static compaction

Duriez test

Proctor compaction

Gyratory compaction

Lowest void content with static compaction!

Influence of curing

Simulate different humidity...

... under room conditions

Cold recycling mixtures (foamed bitumen/emulsion)

Activity of reclaimed asphalt bitumen

Activity of reclaimed asphalt bitumen

Activity of reclaimed asphalt bitumen

Selected job sites: Germany

Core drilling for leaching tests with tar contained layer immobilized by cold recycling and known mechanical properties

 \rightarrow long term experience (25 years old)

Cold recycling layer with tar

Selected job sites: Finland

Sampling for studying material properties

Preparing Marshall specimens

The result...

Material samples of asphalt top layer, gravel, asphalt top layer, unbound material

Selected job sites: Finland

Bitumen tank in front of the WR recycler

Compaction check by Troxler sensor head

Milling and mixing gravel, asphalt top layer and unbound material

Compaction

Selected job sites: Czech Republic

- rehabilitation of R7 expressway
- base layer cold recycling depth of 18 cm
- length: 1,5 km

Cement application

Cold in-situ recycling by DCR machine

Selected job sites: Czech Republic

- use of foamed bitumen (2,8 %) and cement (4 %)
- overlay by 2 asphalt layers

Sufficient compaction

Texture of recycled layer

Water spraying on fresh CR

Selected job sites: Ireland

- N77: Hennebry's Cross, Kilkenny
- Legacy road, variable pavement structure
- 2 km trial section
- Bitumen emulsion and foamed bitumen

Step 1: Recycling – 300mm depth (Emulsion or Foam Mix)
Step 2: Sealing – at the end of each day (binder course)
Step 3: HRA Overlay – 7 days after recycling

Selected job sites: Ireland

- 5 trial sections: 4 emulsion & 1 foamed bitumen
- Residual binder content: 2.2 3.0 %
- Cement content: 0 1.5%
- 12,000 tonnes of material recycled
 - 4,000 tonnes of bituminous
 - 8,000 tonnes of granular
- Data being used for:
 - Conditioning assessment
 - Environmental assessment (leaching & LCA)

Project Team

Coordinator: Dr Jan Valentin (CTU) Project Team: Dr Fátima Batista (LNEC), Dr Michael Engels (Wirtgen), Mr Eanna Fallon (UCD), Dr Ana Cristina Freire (LNEC), Dr Ciaran McNally (UCD), Dr Konrad Mollenhauer (UoK), Ms Aoife Quinn (UCD), Ms Diane Simnofske (UoK), Mr Vaclav Snižek, Dr Amir Tabaković (UCD)

Conference of European Directors of Roads

Thank you for your attention

ciaran.mcnally@ucd.ie