Agglomeration: A New Tool for TII Project Appraisal

TII National Roads Conference, Sept 2018

Agglomeration Benefits: What, Where, and Why!

TII National Roads Conference, Sept 2018

Introduction

Introduction:

- Commissioned by TII
- Team Effort:
 - Dan Graham, Imperial College London
 - Edgar Morgenroth, ESRI/Dublin City University
 - AECOM
- Purpose:
 - Evaluation of transport appraisal projects
- Next Steps
 - Provided to DTTAS
 - Need to adopt official parametres
 - Develop PAG Unit

and Agglomeration for Ireland: Estimated Parameters for Wider Economic Benefit Calculations (DRAFT)	
Professor Daniel J. Graha Imperial College London London SW7 2AZ, UK	am
http://www.imperial.ac	uc.uk/people/d.j.graham
May 2018	

What is Agglomeration? – Part I

Why do we live in towns and cities?

- Jobs
- Healthcare
- Living standards
- Education
- Social reasons

What happens when towns and cities grow?

- Labour market pooling
- Knowledge spillovers occur
- Businesses become more specialised
- Supply chains become shorter and more resilient
- Productivity and incomes increase

What is Agglomeration? - Part II

Can we produce agglomerative benefits with better transport?

Will improved transportation links increase productivity?

- If yes, what types of transport will improve productivity:
 - Road,
 - Rail,
 - Marine, and
 - Air

Where does Agglomeration Occur?: Identifying Agglomeration - Part I

Measuring Effective Density as the sum of:

- Employment per Electoral District, over
- Distance from the centre of respective Electoral District to job, to the power of
- Agglomeration change

Measuring the productivity of firms in Ireland:

- Company Registration Office Data: FAME Database
- Geocoded Company Locations
- Contains information on:
 - Turnover
 - Employees
 - Fixed Assets
- Examined sectors likely to benefit from agglomeration
- Economic techniques use to investigate the relationship between density and productivity

 $y_{it} = g(\rho_{it}, Z_{it}) f(x_{it})$

Where does Agglomeration Occur?: Identifying Agglomeration – Part II

(b) map of MED values Range 0-20: employment 2016

Where does Agglomeration Occur?: Identifying Agglomeration - Part III

	Sector	Code	SIC Divisions
1	Manufacturing	MAN	10-33
2	Construction	CON	41-43
3	Wholesale & Distribution	WAD	45-47
4	Transport	TRA	49-56
5	Information & Communication Technology	ICT	58-63
6	Financial & Business services	FIN	64-74

Where does Agglomeration Occur?: Identifying Agglomeration - Part IV

	sic code	decay parameter	elasticity
Manufacturing	10-33	1.25	0.015
			(0.000)
Construction	41-43	1.00	0.065
			(0.023)
Wholesale & Retail	45-47	-	-
Transport	49-56	1.25	0.092
			(0.022)
Inf. & Comm. Tech.	58-63	-	-
Fin. & Bus. services	64-74	1.50	0.058
			(0.010)

Where does Agglomeration Occur?: Identifying Agglomeration Part V

- 47 Similar studies
- Average value for elasticity was 0.047
- Tightly bunched
- Our results consistent with these

Why do we need to measure Agglomeration Benefits? – Part I

Why?

- Externalities:
 - Some costs are not borne by the user directly, but impact society e.g. Pollution
- Public Good:
 - Goods provided to benefit society without profit

Cost-Benefit Appraisal:

- Is the solution effective?
- Is the solution efficient?
- Need a comprehensive measure of benefits for decision making

Why do we need to measure Agglomeration Benefits? – Part II

UBERTARIANISM

These are **not** benefits for CBA, unlike Agglomeration

Tolls

A government which robs Peter to pay Paul, can always count on the support of Paul.

George Bernard Shaw

Extra activity due to a new road:

- Transport is a means to an end
- Zero-Sum/Displacement
- But, changing patterns may support spatial policy

Employment from construction

- What is the **opportunity cost** of construction?
 - Is the money additional, or reallocated?
 - What else could the money have been spent on?
 - How many homes?
 - How many hospital beds?

Increase the value of land or existing property

- Access improvements increase the value of land
- What happens to land values elsewhere?
- Double counts the other benefits

Agglomeration Benefits: How and When are they Calculated!

TII National Roads Conference, Sept 2018

How are Benefits Calculated? – Inputs

To calculate agglomeration benefits we need:

- Jobs by Sector (SIC Code/NACE Code):
 - Manufacturing(10-33/C)
 - Construction (41-43/F)
 - Transportation (49-56/H&I)
 - Financial and Business Services (64-74/K,L & M)
- Productivity Estimates in Gross Value Added by Sector (NACE Code)
 - Manufacturing(C)
 - Construction (F)
 - Transportation (H & I)
 - Financial and Business Services (K,L & M)
- Average Generalised Cost of Travel Estimates between Electoral Districts

How are Benefits Calculated? – Effective Density

To calculate Effective Density:

Effective Density Equation, by mode:

$$d_{i}^{S,k,f} = \sum_{j} \frac{E_{j}^{S,f}}{(g_{i,j}^{S,f})a^{k}}$$

- Where:
 - *E_i^{S,f}* is Total jobs (E) for all sectors in Electoral Division (j) in the Option (s) for each forecast year (f), over
 - g^{S,f}_{i,j} the Average Generalised Cost of Travel
 (g) between the centre point of one Electoral District (j) to another Electoral District (i) for the Option (s) for each forecast year (f) to the power of distance decay parameter (a) for each sector (k)

	sic code	decay parameter	elasticity
Manufacturing	10-33	1.25	0.015
			(0.000)
Construction	41-43	1.00	0.065
			(0.023)
Wholesale & Retail	45-47	-	_
Transport	49-56	1.25	0.092
			(0.022)
Inf. & Comm. Tech.	58-63	-	-
Fin. & Bus. services	64-74	1.50	0.058
			(0.010)

How are Benefits Calculated? – Benefits

To calculate Effective Density:

Effective Density Equation, by mode:

$$WEI^{f} = \left[\left(\frac{d_{i}^{DS, k, f}}{d_{i}^{DM, k, f}} \right)^{p^{k}} - 1 \right] GVAW_{i}^{DM, k, f} E_{i}^{DM, k, f}$$

	sic code	decay parameter	elasticity	
Manufacturing	10-33	1.25	0.015	1
			(0.000)	
Construction	41-43	1.00	0.065	
			(0.023)	
Wholesale & Retail	45-47	-	-	
_				
Transport	49-56	1.25	0.092	
			(0.022)	
Inf. & Comm. Tech.	58-63	-	-	
	64 74	1.50	0.050	
Fin. & Bus. services	64-74	1.50	0.058	
			(0.010)	

Where:

- $\left[\left(\frac{d_i^{DS, k, f}}{d_i^{DM, k, f}}\right)^{p^k} 1\right]$ is the effective density in the 'Do Something' over the 'Do Minimum/Do Nothing' to the power of the elasticity of productivity for the sector minus 1 – to identify estimated productivity increases.
- GVAW^{DM,k,f} is the measure of productivity per worker per sector per forecast year in the 'Do Minimum'
- *E_i^{DM,k,f}* is the total employment per sector per forecast year in the 'Do Minimum/Do Nothing'
- Falls within 10%-30% of traditional benefist as estimated by TUBA Page 16
 AECOM

How are Benefits Calculated? – Problems

Some problems include:

- **Productivity Estimates**: unreliable due to issues in national statistics. Limited regional data:
 - Manufacturing GVA overstated
 - Equity Values
- **Job Growth:** natural increases in job numbers:
 - Need long-term assumptions
 - Growth by sector or aggregated growth
- Weakness in the evidence base between changes in generalised travel costs and agglomeration impacts:
 - Causality

Industry Type		
Industry Type	GVA €per Employee (2016, December Seasonally Adjusted)	
Manufacturing	€79,000*	
Construction	€52,342	
Transport	€27,618	
Financial and Business Services	€56,985	
*Estimated from the Department of Business Annual Business Survey of Economic Impact, 2016		

How are Benefits Calculated? – Software

Calculations:

- Currently processed using Python script (not fixed).
 - Pros: Processes large amount of data quickly, plus flexible
 - **Cons:** User knowledge of Python may be limited, licensing obstacles
- Intention to deliver user friendly interface similar to COBALT
- Requires input files for:
 - Average Generalised Cost of Travel Estimates by Electoral District;
 - Jobs Data by Electoral District;
 - **3 modelled years** (opening year, scheme design year and scheme horizon year)
- Processes handled internally:
 - Job Growth: New assumptions required
 - **Productivity Growth:** CAF assumptions
 - Interpolation: Estimating intermediate years
 - **Discounting**: Taking into account time preferences

Thank You

