

Innovation in the Design & Installation of Vehicle Restraint Systems (The N58 Experience)

Damien Glackin | Mayo County Council & Rowan O'Callaghan | RPS Group

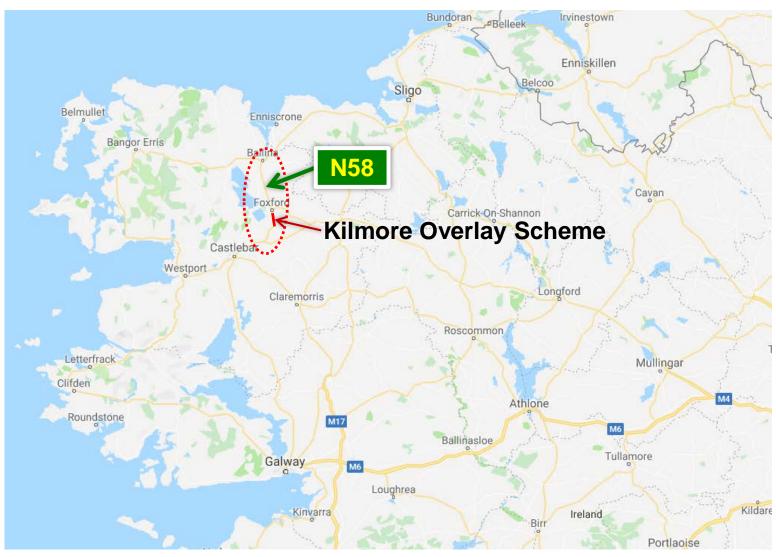
Agenda...

1. Intro to N58 overlay scheme

2. Finding a VRS solution

- Hazards / Constraints
- VRS Options and Innovations
- Testing
- Outcome
- Next Steps

3. Other innovations in VRS


Intro to the N58 Kilmore Overlay Scheme...

N58 Location...

Overlay Scheme Details...

Scheme length: 3.3km

Existing pavement: 50mm to 210mm, weak

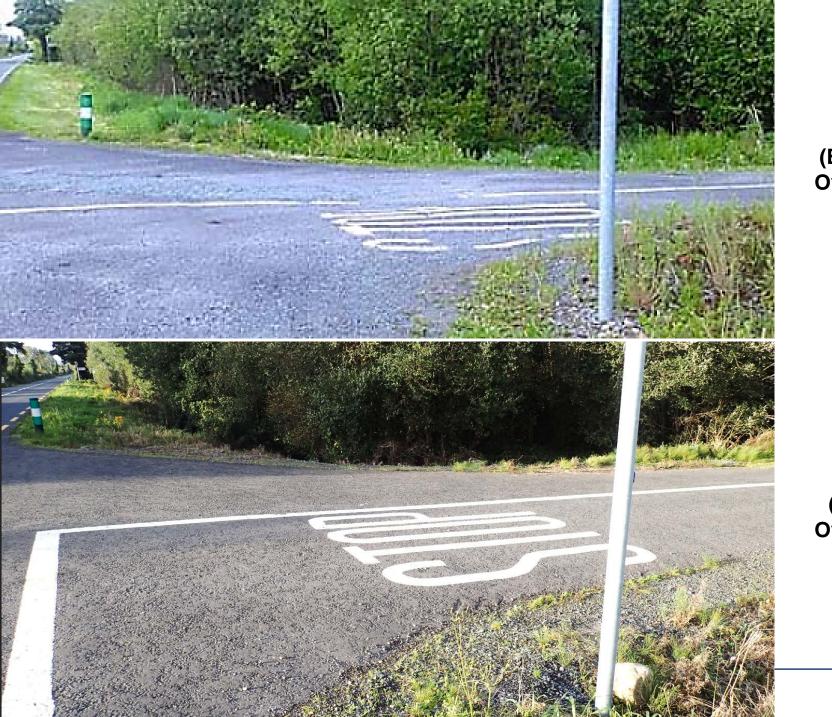
subgrade, no geogrid

Proposed overlay: 170mm average, with geogrid

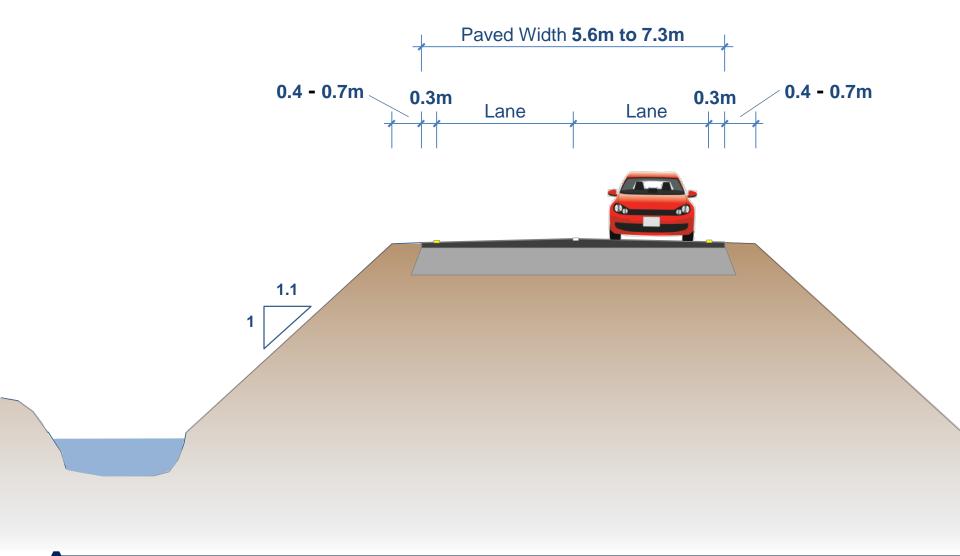
Works: April to July 2017

Cost: €1,197,000 (incl Vat)

N58 Kilmore Overlay Scheme...



N58 Kilmore Overlay Scheme...


(Before Overlay)

(After Overlay)

Scheme Cross Section...

VRS for the Scheme...

- Mayo County Council's Roads Design Section carried out a Safety
 Barrier Risk Assessment for the scheme
- Mayo County Council sought a quote from the overlay contractor to install barrier at high risk locations
- After consultation with TII, VRS element was passed over to RPS (TII's current VRS design consultant)
- RPS tasked with:
 - assessing requirements for VRS
 - carrying out any design required
 - procuring a specialist VRS contractor to install barrier
 - o oversee the works

Safety Barrier Risk Assessment

National Roads Authority Design Manual for Roads and Bridges

Volume 2 Section 2 Part 8A NRA TD 19/15 (Including Amendment No. 3)

APPENDIX C: RISK ASSESSMENT SHEET

		NRA An tÚdarás um Bái	Date: 28 06 17					Completed by: Markele Driell													
		National Boads Au	Location ID/Description:					NSB KILMORE 2017					7								
									Site Survey Conducted (Y/N):						YES.				-		
		Hazard Type, Start and End Co-ordinates	Is Hazard within the Clear Zone (Y/N)	Can the hazard be mitigated?	(1) Hazard Ranking	Sinuosity Index (SI)	(2) Sinuosity Ranking	(3a) Collision Rate Threshold	(3b) Collision Rate Ranking	(4) Risk of a Vehicle Leaving the Road	Ove Ris Rati	rall	Dista to Ha:	zard	Installed (Barrier to be Installed (Y/N), Start and End Co-ordinates		Reasons for Installing/Not Installing the Safety Barrier			
٠	1	ch 50m to 170m	٧	No	High	1-019	Med	4	_	_	~		ſ	~	Y		ii.	inprotected as			
.	-	CL 1295m-1580m	Y	No	High	1.019	Med	4		_	N		į.	~	γ						
- 1	3	STEEP EMBAUKNED ON 2470 - 262 0 M	Υ	No	High	1-001	نىتنا	i	H	M	1-1		1.	~	Y		+	-			
:	4	on 2620 - on 3070	Υ	No	High	1.075	High	4	~	M	Н	\neg		~	Ϋ́		+				
ı	5	5TEEY EM37WKMEN	Y	No	High	1.001	لتانيا	1	1+	M	-			-	Y						
. [6	ch 26% -3070	Υ	No	itigh	1-075	High	4	4	M	Н		1.	~	Y		+				
	(1) He	L = Low, M = Medium, H = High Hasard Ranking as now Ascendix D (2.5 Sinusative Ranking High (H) > 1.02 High (H) > 1.02								Risk of a Vehicle Leaving the Road	the Road Collision R.				Overall Risk Rating Risk of a		lazard Ranking				
	Medii Low (um (M) as per Appendix D (L) as per Appendix D		• (M) = 1.004 ≤SI≤I) <1.004	.02					Sinuveity Ranking	н	м	L		Vehicle Leaving the Road	н	31	L			
		Collision Rate Threshold	(3b) Co	Illision Rate Ranking					[н	н	н	м		н	11	н	м			
	(2) A	vice above Expected Rate High (H) = Twice above Expected Rate bove Expected Rate Medium (M) = Above Expected Rate from Expected Rate Low (L) = Below Expected Rate						- 1	M f.	H	M	L.		M	н	м	L				
		lelow Expected Rate wice Below Expected Rate	Low (L)	- Below Expected R	ate and Twice Bel	ow Expected Rate			ı	L	М	L	L.		L	м	L.	L			

APPENDIX C: RISK ASSESSMENT SHEET

	NRA An tÚdarás um Bó National Roads Au	thre Naisiante		≃≶ಟಿ√ 1D/Descri		_	pleted by:		2017							
	Hazard Type, Start and End Co-ordinates	Is Hazard within the Clear Zone (Y/N)	Can the hazard be mitigated?	(1) Hazard Ranking	Sinuosity Index (SI)	(2) Sinuosity Ranking	(3a) Collision Rate Threshold	(3b) Collision Rate Ranking	(4) Risk of a Vehicle Leaving the Road	(5) Overall Risk Rating	Distanto Haza	ard	Barrier to Installed (Start and Co-ordin	Y/N). End	Ins	asons for alling/Not talling the
1	STEET EMBINATION \$43660 - oh 2620	· 'Y	N	High	1-075	High	4	L	M	Н						ity Dairies
2	SADO EMPANDADA	Y	No.	thigh	1-001	. دیستا	1	++	M	н		\pm			+-	
3	STEEP EMPLANEMENT	Y	No.	High) • દાવ	Meet.	4		<i>L</i>	M						
4												\rightarrow			_	
5												+		_	-	
6	Low. M = Medium, H = 1											+			\vdash	
(E) Ha High	transf Banking as per Appendi (II) so per Appendix D som (M) as per Appendix D L) as per Appendix D	x D. (3) Sim High (1) Medius	toxity Hanking (t) > 1.02 a (M) = 1.004 ≤ St ≤1 0 < 1.004	.02					Risk of a Vehicle Leaving the Road Signostic Ranking	Collision . Rankin	Stare E	FOA	Rating Risk of a icle Leaving the Road	Ниди	M L	-
(1) T (2) A	Collision Rate Threshold wice above Expected Rafe Joine Expected Rate slow Expected Rate	Medium	Twice shove Espect - Twice shove Espect Above Espected R.	cred Rate	ow Expected Base				M L	H H H M	L L		M L	H	H M M L	

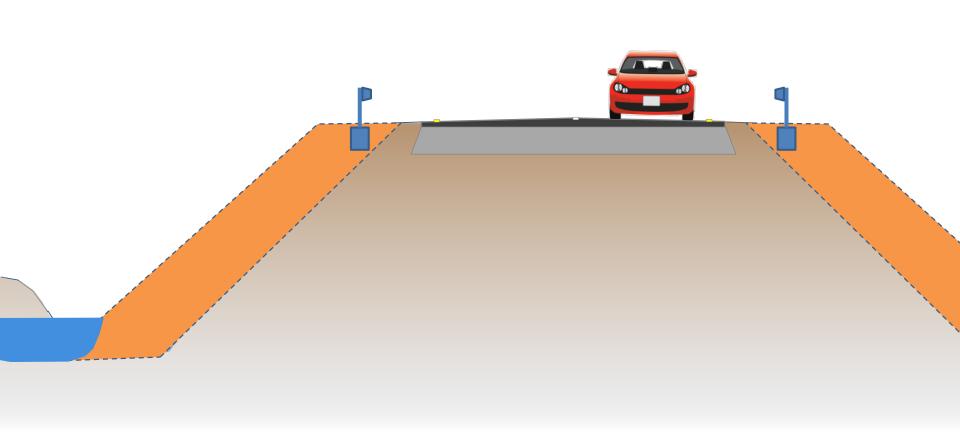
(4) Risk of a Vehicle Leaving the Road

Finding a VRS solution...


The Hazards...

Constrained Location for VRS...

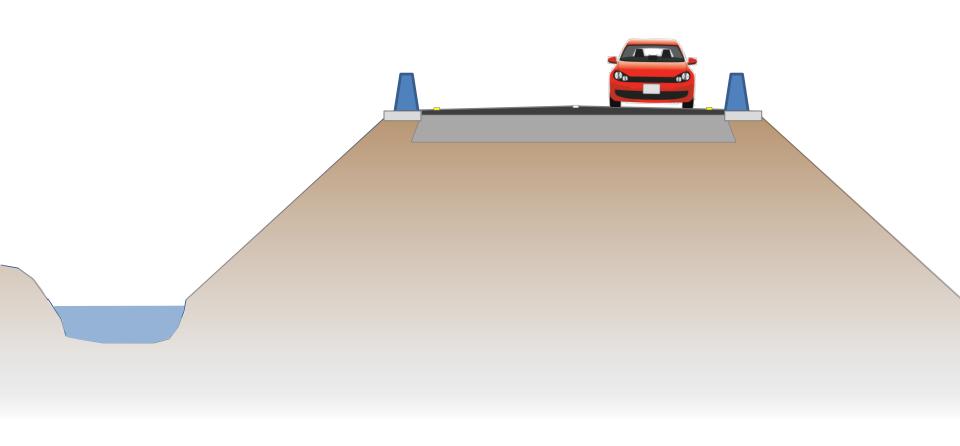
N2 v H2



Options Considered but Ruled Out...

Widen Rampart Embankment...

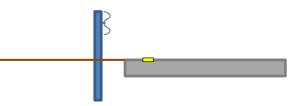
Precast Foundation Slabs...

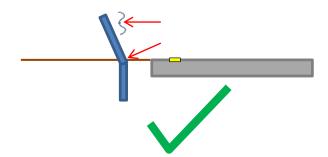


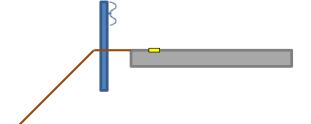
Concrete Barrier...

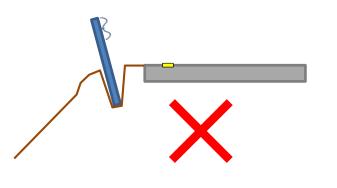
Barrier on Continuous Concrete Beam...

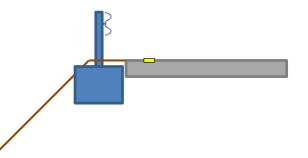
Viable Options Considered...

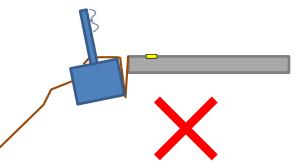





What the 'Solution' must provide...


What we want to happen...




Normal Driven Post...

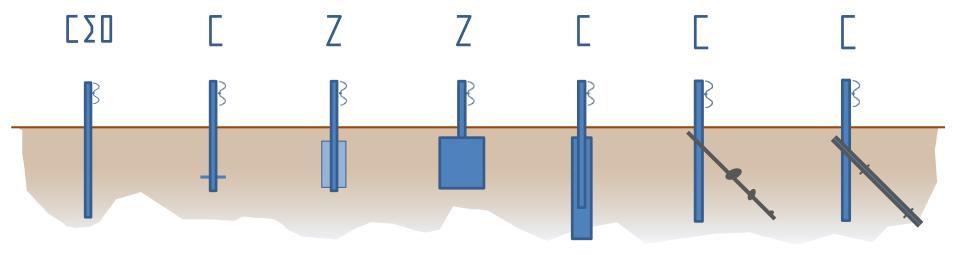
Normal Concreted Post...

Why do we need a Plastic Hinge?

Exploring the Options...

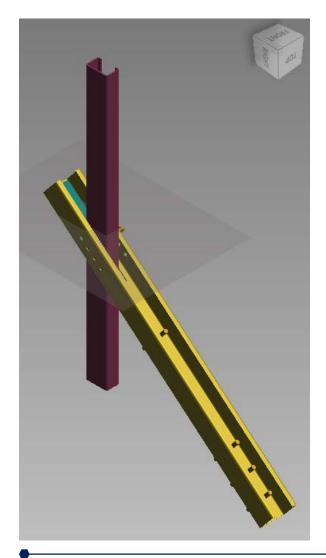
Find or innovate a post solution which could provide a plastic hinge

Test the solution on the N58 site (both statically and dynamically) to see if the plastic hinge forms and if post performs


Select the most appropriate solution for the given site and ground conditions, with the confidence that it will perform

Options...

On Site...



Testing...

Push Test: Post in Concrete...

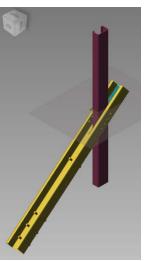
THOR: Dynamic Testing...

THOR: Long C Post Driven...

THOR: C Post in Concrete...

THOR: C Post with Pin...

Only the Pin
system passed
both static
and dynamic tests
for the N58 site



Outcome: The Pin System...

Features:

- ✓ Simple, robust, inexpensive (once in production)
- ✓ Versatile can use with N2, H2 & Terminals
- ✓ Re-use (easy to repair a post slide out, slide in)
- New system, refinements likely, no installation manual yet
- Requires precise installation to line up posts, to avoid damage to sub formation or pavement (specialist plant?)
- May be difficult to remove
- Unsuitable where services are located under the pavement

Next Steps...

- 1. Trial installation of a short section of VRS on the N58
- 2. Learn as much as possible (installation issues etc)
- Progress full installation of VRS on the N58 Kilmore Scheme using Pins

Other Innovations & Developments in VRS...

New Standards...

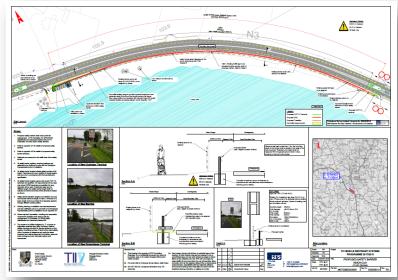
Already Here...

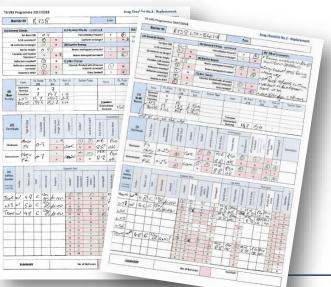
- 1. Terminal & Transition Assessment Procedures
- 2. Guidance for Retrofitting VRS on the Legacy Network

On The Way...

- 2. Standard for Design of VRS for Constrained Settings
- 3. Standard for Cross Section / Headroom (Rev)
- 4. Specification (Rev)

Training...



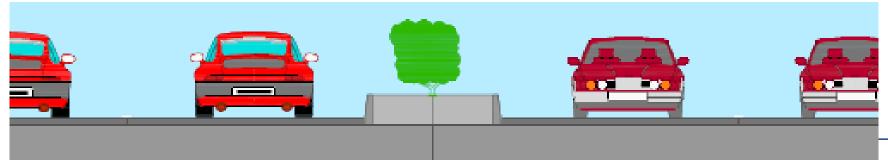


Driving Up Quality...

Driving Up Quality...

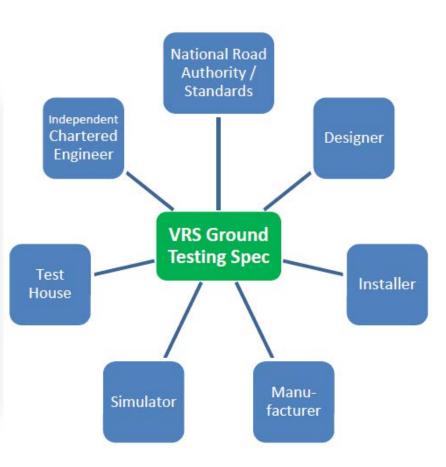
Creating Forgiving Roadsides...

New 2+2 Median Barrier...



High Containment Kerb...

Crash Cushions...



Ground Testing...

VRS Maintenance Guidelines...

Irish Barrier Association...

