

Risk-Based Geometric Design for Road Improvements

Seamus Mac Gearailt – Roughan & O'Donovan Prof. Alan O'Connor – Trinity College Dublin Tom Casey – Transport Infrastructure Ireland

28th September 2018 TII National Roads Conference 2018

Context & The Challenge for Road Network Management

TII Strategic Goal

Road Network Management

Context & The Challenge for Road Network Management

6.	Legacy National Road Network	= 3,000 km approx.	57% of Total
5.	National Secondary Road Network	= 2,650 km	Mostly legacy roads
4.	Low-Quality National Primary Roads	= 400 km	
3.	High-Quality National Primary Roads	= 1,350 km	
2.	Motorway Network	= 900 km	
1.	National Road Network Length	= 5,300 km	

"Legacy Roads" are very variable and inconsistent in quality.

Upgrade of existing single carriageway roads would cost typically €5m/km.

A full upgrade programme of the legacy National Road Network would cost €15 billion !!

How can the asset be managed for improved performance in a sustainable and cost effective manner?

Road Design Standards

Transport Infrastructure Ireland

Publications

DN-GEO-03030 (Former TA 85) Guidance on Minor Improvements to National Roads

DN-GEO-03031 (Former TD 9) Rural Road Link Design

Road Design Standards

DN-GEO-03030 Guidance on Minor Improvements to National Roads

Objectives of Minor Improvements Schemes:

Example: Removal of a sub-standard bend.

"Achieve a localised improvement appropriate, and <u>consistent</u> with the characteristics of the adjacent sections of the route"

Primary focus is to Manage the Asset:

Maximise Performance & <u>Minimise</u> <u>Collision Risk</u> Which Bends?

"Many roads in Ireland are legacy roads with sub-standard design features... upgrade some, but not all these existing deficiencies within environmental & budget constraints."

LIROD

Road Design Standards

DN-GEO-03031 Rural Road Link Design

Relaxations for Horizontal Curvature

- 3 Steps for Type 2 Single
- 4 Steps for Type 3 Single.

On what Basis to select?

Justification?

- a) What is Consistent in terms of curvature?
- b) How can Safety Benefits be characterised and evaluated?
- c) Risk Transfer if a road is improved at too high a standard locally?
- d) How much improvement is "enough" over cumulative schemes?

LIROD

RibGeom

A New Approach to Appropriate Application of Road Design Standards

A Risk Assessment tool:

- 1. Risk Based Asset Management Optimised Performance / Cost / Risk
- 2. Identify the most critical locations for risk
- 3. Examine the causes of risk
- 4. Assess potential improvements
- 5. Risk Based Prioritisation
- 6. Inform network improvement strategies
- 7. Inform design standards

LRO

Risk-Based Geometric Design

Design consistency

The conformance of a road's geometric and operational features with **driver expectancy**.

Driver's expectancy

Readiness to respond to situations, events, and information in predictable and successful ways

LIROD

Geometric inconsistencies Surprise the driver and reduce the safety of the road.

Geometric - Risk Analysis Model – International Best Practice

Geometric - Risk Analysis Model

Risk Analysis Model

A model has been created to define the **overall geometric risk of 7 elements**:

- 1. Speed Variation: Design Speed
- 2. Speed Variation: Operating Speed
- 3. Alignment: Horizontal Curvature
- 4. Vehicle Stability: Side Friction
- 5. Alignment: Vertical Curvature
- 6. Sight Distance
- 7. Driver's Workload (How alert and Active must they be)

$$M_{i} = w_{1} \cdot Q_{C_{Ii}} + w_{2} \cdot Q_{C_{IIi}} + w_{3} \cdot Q_{C_{III}} + w_{4} \cdot Q_{SSD_{i}} + w_{5} \cdot Q_{CRR_{i}} + w_{6} \cdot Q_{VRR_{i}} + w_{7} \cdot Q_{Wl}$$

LIROD

Geometric - Risk Analysis Model

The main characteristics are:

- Multicriteria analysis (7 combined risk criteria)
- **Risk Rating:** 1 (Riskiest) 0 (Safest)

Operating Speed Variation

= Consistency Score:

Very Good:	< 5 km/h	
Good:	5-10 km/h	
Fair:	10-20 km/h	
Poor:	20-30 km/h	
Very Poor:	> 30 km/h	

FIROD

Risk rank locations. To prioritize improvements

Sorted Risk								
Or	ID	Туре	Ini Ch	End Ch	Risk			
1	19	Bend	1556	1643	0.92			
2	29	Bend	2495	2622	0.86			
3	21	Bend	1662	1764	0.76			
4	37	Bend	4052	4189	0.54			
5	31	Bend	2673	2782	0.50			
6	33	Bend	2871	3021	0.46			
7	9	Bend	711	857	0.42			
8	28	Tangent	2389	2495	0.36			
9	35	Bend	3769	3860	0.36			
10	20	Tangent	1643	1662	0.35			
11	13	Bend	1039	1178	0.33			
12	17	Bend	1325	1511	0.32			
13	34	Tangent	3021	3769	0.32			
14	12	Tangent	998	1039	0.31			
15	36	Tangent	3860	4052	0.31			

LIROD

Speed Model was defined to calculate the curve and tangent operating speeds of any road alignment

Operating Speed Regression (Curves)

 $V_{85} = 2 \cdot 10^{-6} \cdot CCR^2 - 0.0528 \cdot CCR + 92.577$ $R^2 = 0.8696$ (Polynomial Regression)

 $V_{85} = 94.824 \cdot e^{-8 \cdot 10^{-4} \cdot CCR}$ $R^2 = 0.881$ (Power Regression)

Pilot Sites for Real Operating Speed Data

Operating Speed – Speed regression

The approximation formula results in:

Risk-Based Geometric Design

> Risk Analysis process

Consequently, the work process is the following:

- 1. Define road alignment and visibility
- 2. Determine Operating and Design speed
- 3. Analyze risk for both directions
- 4. Determine critical locations
- 5. Design improvement scheme

6. Re-analyze risk after actions

FIROD

Case Study No.1

N14 at Tullyrap, Co. Donegal

N14 – Case Study Route

LIROD

N14 Route

- 17.5 km between Lifford and Manorcunningham, County Donegal.
- Road Width Varies between 6.0m and 7.0m.
- Typical Verge Width: 2m.

N14 at Tullyrap

- 1.65km in length.
- Very narrow verge width, down to zero at locations.
- Recorded Collision History: 7 collisions over 7 Years.

LIROD

N14 – Derived Horizontal Alignment

Existing N14 alignment derived from available routine SCRIM Survey GPS data

Curve Radius	DN-GE0-03031 Standard for 100km/h Design Speed (Table 1.3)	Number of Curves
<127m	Beyond Standard (6 Steps Below Des Min)	2 (2.3%)
127m - 180m	Beyond Standard (5 Steps Below Des Min)	3 (3.5%)
180m - 255m	Four Steps Below Desirable Minimum	15 (17.4%)
255m - 360m	Three Steps Below Desirable Minimum	12 (14.0%)
360m – 510m	Two Steps Below Desirable Minimum	7 (8.1%)
510m – 720m	One Steps Below Desirable Minimum	4 (4.7%)
>720m	Desirable Minimum	43 (50.0%)

20 of 86 (23.3%) of horizontal curves are more than 3 Steps below Des. Min. for Type 2 Single Carriageway

N14 – Existing Alignment Risk Profile

Existing N14 alignment Risk Profile determined from Risk Model

The Risk Ratings at Tullyrap are generally higher and more extensive than elsewhere on the route

N14 – Existing Alignment Speed Profile

Existing N14 alignment Operating Speed Profile determined from Risk Model

The Speed Variation along the N14 at Tullyrap was calculated at 29km/h

N14 – Existing Alignment Speed Profile Validation

> The predicted existing N14 alignment Operating Speed Profile was compared to Speed Survey results taken at 12 locations.

FIROD

- > 4 No. horizontal realignment options were developed at Tullyrap.
- > Options were remodeled for Collision Risk to determine the optimal solution consistent with the adjacent sections of road.
- The optimal indicative realignments comprised a realignment scheme totaling 1.35km in length = 20% shorter than initially proposed.

N14 – Realignment Risk Profile

> N14 realignment Risk Profile determined from Risk Model

Risk Rating at Tullyrap reduces from 0.96 to 0.6 max and typically 0.35 Roughan & O'Donovan

Case Study No.2

N76 at Seskin, Co. Tipperary

N76 – Case Study Route

LIROD

N76 – Existing Alignment Risk Profile

Existing N76 alignment Risk Profile determined from Risk Model

Case Study No.3

N71 Innishannon to Bandon, Co. Cork

N71 – Case Study Route

N71 – Existing Alignment Risk Profile

Conclusions

Conclusion

The project has obtained:

- 1. A Risk Analysis Model capable of preforming risk analysis at multiple scales (i.e. National, Regional, Local).
- 2. Automated procedures & models to provide:
 - a. Alignment definition (horizontal & vertical)
 - b. Stopping Sight distances
 - c. Operating speeds
- **3. Coupling of these models provides the means to:**
 - a) perform risk screening exercises and develop roads needs studies at <u>National and Regional levels</u>; and to
 - b) Optimise route planning (rolling programmes) and phasing of improvements to optimise (i) Risk, (ii) Performance (consistency) and (iii) Cost.

TII Publications

Future Inclusion

LIROD

Risk-Based Geometric Design for Road Improvements

DN-GEO-030XX Date TBC

DN Design

Technical