Irish Analytical Pavement Design Method (IAPDM)

The case for IAPDM Peter Adams (Arup)

Mechanistic Empirical Pavement Design Eric Farrell (AGL Consulting)

TII Roads Conference - 28th September 2018

Principles of road pavement

WHY?

Here is WHY?

- Pavement Design should be based on sound engineering principles.
- The current Design Method contained within TII Publications does not allow the Designer to properly capture and use the inherent mechanical properties of either the constituent materials or the mixes.
- Research has shown Ireland is behind the curve of other many other countries
- It is estimated that the Mechanistic Empirical method may reduce the thickness of a new long life pavement by on average 15% saving approximately €M for a 25km Irish Road scheme and approximately €1.5M per annum on road maintenance schemes

It is a sustainable solution

Targeted Designs using the mechanical properties of the Constituent Materials and the Products

Less Materials

Less Transport

Less Congestion/Less Disruption

GE

TII Publications

RE

Current Design (TII Publications)

Traffic Assessment PE-SMG-02002 TRL Report PPR 066 (2006)

Pavement & Foundation Design DN-PAV-03021 TRL Report LR 1132 (1984)

Figure 4.2 Design chart for fully flexible pavement

Pavement Design Flexible

Hydraulic Bound Base Material Category

HBM Category	А	В	С	D		
Crushed Rock Coarse Aggregate: (with coefficient of thermal expansion < 10x10- 6 per ⁴ C)	-	CBGMB - C8/10 (T3)	CBGMB - C12/15 (T4)	CBGMB - C16/20 (T5)		
Gravel Coarse Aggregate: (with coefficient of thermal expansion ≥ 10x10-6 per °C)	CBGMB - C8/10 (T3)	CBGMB - C12/15 (T4)	CBGMB - C16/20 (T5)	-		

Pavement Design Flexible Composite

We can do better!!!!

Irish Analytical Pavement Design Method

Irish Analytical Pavement Design Method (IAPDM)

Mechanistic Empirical Pavement Design

TII Roads Conference - 28th September 2018

Features of the Mechanistic Empirical Pavement Design Method (MEPDM)

- ➢ Input Traffic, Environmental, and Material Properties
- Response Model based on Engineering Mechanics
- Distress Model and Transfer Functions to relate critical parameters to failure mechanisms

Modern International Approach

- MEPDM has been adopted in the USA, France, Sweden, South Africa, New Zealand, Australia and many other countries
- Road Pavement Design is based on actual measured material properties
- Actual recorded data from WIM surveys, meteorological records and traffic forecasts can be used to optimise life cycle road pavement design

Mechanistic Empirical Pavement Design Method (MEPDM)

Traffic Load & Climatic Data

al Bai

1981-2010 Mean Annual Rainfall (mm) Annual Rainfall 1881-2014 Valenta Praenix P

Pavement Structure

Example of Material Characterisation for Bituminous Layer

- Different frequencies to simulate different traffic speeds
- Different temperatures to consider climatic effects
- Different strain levels

AMADEUS - Response Models

Software Name	Method Used in response model	Type *	Non Linearity	Rheology	Anisotropy	Interface	Climatic effects	Dynamic Ioading	Axle spectrum	Tyre characteristics	Stochastic	Crack propagation	Thermal effects	Cumulated damage	Fatigue	Permanent Def
APAS-WIN	Multilayer	3					Y		Y	Y			Y		Y	
AXYDIN	Axi-symmetric FEM	1						Y								
BISAR/SPDM	Multilayer	3				Y	Y		Y						Y	Y
CIRCLY	Multilayer	3			Y	Y			Y	Y				Y	Y	
CAPA-3D	3D-FEM	3	Y	Y	Y	Y		Y		Y		Y	Y	Y	Y	Y
CESAR **	3D-FEM	3	Y	Y	Y	Y	Y	Y		Y	Y	Y		Y	Y	Y
ECOROUTE **	Multilayer	1				Y				Y				Y		
ELSYM 5	Multilayer	1														
KENLAYER	Multilayer	2	Y	Y		Y		Y		Y				Y	Y	Y
MICHPAVE	Axi-symmetric FEM	1	Y												Y	
MMOPP	Multilayer	2	Y				Y	Y	Y	Y	Y	Y		Y	Y	Y
NOAH	Multilayer	3			Y	Y	Y		Y		Y				Y	Y
ROADENT/WESLEA ***	Multilayer	2				Y	Y		Y	Y						
SYSTUS	3D-FEM	2	Y	Y	Y	Y		Y		Y		Y				
VAGDIM 95	Multilayer	3					Y						Y	Y	Y	Y
VEROAD	Multilayer	1		Y					Y	Y	Y					
VESYS	Multilayer	3					Y		Y	Y	Y			Y	Y	Y

IAPDM - Response Model (TIIPAV)

- Based on Multi-Layer Linear Elastic (MLLE) theory
- Wheel load can be single or dual wheel
- Layer n is a semi-infinite elastic half-space
- $\succ E_i \& v_i \text{ denotes Modulus of} \\ \text{Elasticity } \& \text{Poisson's Ratio} \\ \text{of each layer } i \\ \end{cases}$

Distress Models & Calibration

Transfer/Distress Functions

Example Bitumen

 $> N_t = 10^{-3.083} \epsilon_t^{-3.291} E^{-0.854}$

Calibration of distress models with measured response in Irish roads is in progress

Iterative Recursive Analyses

Miner's Law in relation to varying stress is:

$$\sum_{i=1}^{\kappa} \frac{n_i}{N_i} = C$$

where

k = different stress magnitude $n_i = number of cycles applied$ at stress level Δ

- N_i = number of cycles to failure at stress level Δ
- C is normally taken as 1

Traffic Variation

Temperature Variation

Failure Modes

Ref. No	Description of Mechanism	M-E Analysis
1	Deformation in the bituminous layers;	Yes
2	Cracking initiated at the surface;	Yes
3	Longitudinal unevenness;	Yes+geotechnical & workmanship
4	Loss of skid resistance;	
5	Cracking initiated at the bottom of the base course;	Yes
6	Surface cracking;	Yes?
7	Ravelling;	
8	Deformation in the subgrade;	Yes
9	Frost heave;	
10	Wear due to studded tyres;	
11	Low temperature cracking;	
12	Permanent deformation from unbound layers.	Yes

Hierarchical Input to Response Model

- ➤ Input level 1 Input parameters measured directly, site or project specific
- Input level 2 Input parameters estimated from correlations or regression equations which are based on previous experience
- Input level 3 Best estimated or default values

THANK YOU

